SINGLET OXYGENATION OF CIS, CIS-1, 5-CYCLOOCTADIENE: A CONVENIENT SYNTHETIC ENTKY INTO 5,8-DIFUNCTIONALIZED OXYGEN DERIVATIVES OF 1,3-CYCLOOCTADIENE.'

Waldemar Adam*² and Bert H. Bakker

(Department of Chemistry, University of Puerto Rico, Rio Piedras, P.R. 00931 U.S.A.)

 $\texttt{SUMMARY:}$ The 6-hydroperoxy-1,4-cyclooctadiene (2), which is formed in the photo- ${\tt sensiltized}$ oxygenation of $1,5\text{-cyclooctadiene}$ (\downarrow), af nation 5,8-dihydroperoxy-1,3-cyclooctadiene (2), w affords on further singlet oxygewhich via triphenylphosphine re- $\texttt{duction}$ leads to $\underline{\texttt{cls}}$ -5,8-dihydroxy-1,3-cyclooctadiene (4) and subsequent pyridinium chiorocnromate oxidation to $1,3$ -cyclooctadien-5,8-dione ($\S)$.

Pnotosensitized singlet oxygenation of $1, 5$ -cyclooctadiene (\downarrow) in methanol, using rose bengal as sensitizer, has been reported³ to afford 6-hydroperoxy-1,4cyclooctadiene (2) , as shown in eq. 1. It appeared to us that the 1,4-cyclooctadiene

derivative λ should be susceptible towards further singlet oxygenation to the dihydroperoxide $\frac{3}{4}$ in view of the fact that 1,4-dienes react readily with singlet oxygen via ene-reaction with the doubly activated methylenic hydrogens.⁴ Since the sequence in eq. 1 constitutes a convenient synthetic entry into 5,8-difunctionalized oxygen derivatives of 1,3-cyclooctadiene, we have investigated the exhaustive singlet oxygenation of 1,5-cyclooctadiene and herein report on the feasibility and synthetic utilization of this approach.

When a CH_2Cl_2 solution of 1,5-cyclooctadiene (25.4 mmol in 50 ml) was submitted to tetraphenylporphyrin (2 mg) sensitized photo-oxygenation at 0°C under the conditions described previously, 5 a mixture of the monohydroperoxide $\it{\hat{z}}$ and the dihydroperoxide $\frac{3}{\sqrt{2}}$ was formed, $\frac{3}{\sqrt{2}}$ as evidenced by 1 H-NMR monitoring. On further singlet oxygenation the monohydroperoxide $\frac{2}{b}$ was mostly converted into the dihydroperoxide 3. In a separate experiment it could be confirmed that the authentic monohydroperoxide 2 afforded the dihydroperoxide 2 on TPP photo-sensitized singlet oxygenation in CDCl₃ (¹H-NMR monitoring) at 0°C. Silica gel chromatography, eluting with $10\!:\!1$ CHCl $_3/$ EtOH, afforded 67% of the dihydroperoxide $\frac{3}{\sqrt{2}}$ and 8% monohydroperoxide $\frac{2}{\sqrt{2}}$. The dihydroperoxide β was isolated as a colorless, crystalline solid, mp 50-55°C, 93% pure by peroxide titration; however, it proved difficult to recrystallize this substance in view of its great hygroscopic nature. The following spectral data support the structure assignment: 1 H-NMR (CDC1₃/TMS) δ (ppm) 1.9-2.2 (m, 4H), 4.6-5.0 $(m, 2H)$, 5.5-6.2 $(m, 4H)$, and 8.30 $(s, 2H)$; IR $(CHCl₃) \vee (cm⁻¹)$ at 3550-3300 (OH) **2950** and 2890 (aliphatic Ch), and 1650 (C=C).

Unequivocal structure proof for the dihydroperoxide λ could be provided via triphenylphosphine reduction in CHCl₃, affording the labile 5,8-dihydroxy-1,3cyclooctadiene (4) , 83% yield, mp 87-89°C (from 1:3 acetone/hexane), after silica

diol 4 are: 1 H-NMR (CDCl₃, TMS) $_\delta$ (ppm) 1.9-2.1 (m, 4 H), 2.20 (s, 2H), 4.3-4.7 (m,

2H), and 5.4-5.9 (μ , 4H); IR (neat) v (cm^{-1}) 3500-3300 (OH), 3020 (olefinic C-H), 2950 and 2880 (aliphatic C-H), and 1650 (C=C). On catalytic hydrogenation over Pd/C in CH₃OH, the unsaturated diol 4 was converted quantitatively into the hygroscopic <u>cis</u>-1,4-dihydroxycyclooctane (5), mp 81-83°C from ethyl acetate (lit.⁶ mp 83-84°C). Its spectral data are: 1 H-NMR (CDCl₃, TMS) δ (ppm) 1.5-2.0 (m, 12H), 2.30 (s, 2H), and 3.90 (m, 2H); IR (CHCl₃) \sqrt{cm}^{-1}) 3700-3350 (OH) and 2940 and 2860 (aliphatic C-H). Not only does the $cis-1$, 4-diol $\frac{5}{6}$ confirm that the dihydroxy functionalities in the 1,3-cyclooctadiene derivative 4 are 5,8-positioned, but that **they** are in the cis-geometrical arrangement. Therefore, the dihydroperoxy derivative of 1,3-cyclooctadiene 2 must have the oxygen functionalities also in the cis-5, b arrangement. Inspection of Dreiding models of the hydroperoxide 2 reveals that the ene-reaction should prefer cis-functionalization of the second hydroperoxy group at the S-position since the corresponding 3-methylenic hydrogen has the best axial allignment for singlet oxygenation.⁷

It is of interest to mention that the $cis-5,8-di$ hydroxy-1,3-cyclooctadiene (ϕ) is thermally quite labile, rearranging slowly into 6-hydroxy-3-cyclooctenone (6) at room temperature. More effectively, on 3h reflux in $\mathsf{C}_6\mathsf{H}_6$ -ethanol the diol $\frac{\mathsf{A}}{\mathsf{A}}$ is quantitatively converted into the hydroxyenone 6 , colorless oil, whose spectral data are identical to those reported³ for structure $\varphi_{\mathcal{R}}:$ ¹H-NMR (CC1,, TMS) $_{\delta}$ (ppm) 1.5-2.7 (m, 8H), 4.3 (s, 1H), 4.4-4.7 (m, 1H), and 5.5-5.7 (m, 2H); IR (neat) $_v$ (cm⁻¹) 3600-3300 (OH), 3030 (olefinic C-H), 2990-2850 (aliphatic C-H), 1700 (C=O), and 1660 (C=C). Oxidation of hydroxyenone 6 with pyridinium chlorochromate 8 gave the enedione ζ in 50% yield, colorless liquid, bp 120°C (bath temp.) at 3.0 mm, n_D^{20} 1.5056, correct elemental composition for $C_8H_{10}O_2$.⁹ The following spectral data confirm its structure: 1 H-NMR (CCl₄, TMS) δ (ppm) 2.60 (s, 4H), 3.00-3.20 (m, 4H), and 5.65-5.90 (m, 2H); IR (CCl₄) \sqrt{cm}^{-1}) 3020 (olefinic C-H), 2960 and 2920 (aliphatic C-H) and 1705 (C=O). This chemical transformation clearly establishes our claimed hydroxyenone 6 structure. The facile $4\rightarrow 6$ thermal rearrangements can be readily rationalized in terms of an allowed 1,5-hydrogen shift, followed by ketonization (eq. 2). Inspection of a Dreiding model of diol $\frac{1}{N}$ shows that its α -hydrogens are most conveniently alligned conformationally for such a 1,5-hydrogen shift.

Finally, pyridinium chlorochromate oxidation of the diol $\frac{1}{\lambda}$ afforded the dienone $\frac{8}{6}$ in 60-70% yield as a pale yellow oil, whose spectral properties were identical to those reported for the authentic substance. 10 The convenient preparation of this interesting 5,8-diketo-1,3-cyclooctadiene via the synthetic sequence $1+3+$ $4+8$ reported here, illustrates the usefulness of the novel difunctionalization of cyclic dienes via sequential ene-reaction with singlet oxygen. We are presently extending the generality and utility of this synthetic concept.

ACKNOWLEDGEMENTS are made to the Donors of the Petroleum Research Fund (Grant No. 11022-ACl), administered by the American Chemical Society, the National Science Foundation (Grant No. 78-12621), and the National Institutes of Health (Grant Nos. GM-00141-04 and RR-8102-07) for generous financial support.

References:

- Paper No. 97 in the Cyclic Peroxide Series. 1.
- NIH Career Development Awardee (1975-80). $2.$
- T. Matsuura, A. Horinaka, H. Yoshida and Y. Butsugan, Tetrahedron, 27, 3095 3. (1971) .
- T. Matsuura, A. Horinaka and R. Nakashima, Chem. Lett., §§7 (1973). 4.
- W. Adam and H.J. Eggelte, J. Org. Chem., $\frac{1}{66}$, 3987 (1977). 5.
- A.C. Cope, J.M. Grisar, and P.E. Peterson, J. Am. Chem. Soc., 81, 1640 (1959). 6.
- R.W. Denny and A. Wickon, Org. React., 20 , 133 (1973). 7.
- E.J. Corey and J.W. Suggs, Tetrahedron Lett., 2647 (1975). δ.
- Atlantic Analytical Laboratories, Atlanta, Georgia. 9.
- M. Oda, Y. Kayama, H. Miyazaki, and Y. Kitahara, Angew. Chem., & Z, 414 (1974). LO. (neceived in USA) August 1979)